This is the sixth part of a seven-part-series explaining how to build an Enterprise Grade OpenSource Web Analytics System. In this post we are taking a brief look on what we can do with the data we collected and processed with Clickhouse. In the previous post we built a persisted visitor profile for our visitors with Python and Redis. If you are new to this series it might help to start with the first post. During this series we defined multiple topics within Kafka. Now we have different levels of processing and persistence available. If we want to keep any of it, we should put it in a persistent storage like a Data Lake with Hadoop or a Database. For this project, we are using Elasticsearch and dipping our toes in a database called Clickhouse for fun! Feeding Data into Elasticsearch From the previous part, we have a nice Kafka […]
Tag: Clickhouse
Building an Enterprise Grade OpenSource Web Analytics System – Part 1: Architecture
Some time ago I wrote a litte series on how to amp up your log analytics activities. Ever since then I wanted to start another project building a fully fledged Analytics system with client side tracking and unlimited scalability out of OpenSource components. This is what this series is about, since I had some time to kill during Easter in isolation ? This time, we will be using a tracker on the browser or mobile app of our users instead of logfiles alone, which is called client side tracking. That will give us a lot more information about our visitors and allow for some cool new use cases. It also is similar to how tools like Adobe Analytics or Google Analytics work. The data we collect has then to be processed and stored for analysis and future use. As a client side tracker, we will be using the Snowplow tracker. […]